Implementation of the Goddard EOP Kalman Filter /Smoother

John M. Gipson

September 23, 1997

Abstract
I describe the algorithms used in the Goddard EOP Kalman filter eop kal.

1 Introduction

The orientation of the solid Earth changes because of external torques or the exchange of angular
momentum between the solid Earth and the atmosphere and the oceans. The time evolution of
this system can be viewed as obeying the following schematic linear equation:

%EOP = F EOP+ G (AAM + OAM) (1)

here FOP are the EOP parameters, F' is some transfer matrix, GG is another transfer matrix, and
AAM and OAM stand for, respectively, the atmosphere angular momentum and the ocean angular
momentum. The goal of this note is to derive a model for EOP which accurately reproduces the
spectrum of EOP. This model will then be used as a starting point for a Kalman filter.

In the following section we briefly review some facts from linear system theory. This is followed
by the relevant equations for a continuous Kalman filter. In the following section we construct a
model for UT1. This is followed by a model for PM. In much of the work which follows we need
to evaluate functions of the form exptA where A is a matrix. An appendix derives the explicit
formula for the case where A is an arbitrary 2 X 2 matrix.

2 Linear Systems

2.1 Noiseless Case

Suppose that we have some model which is specified by a linear first order differential equation.
This model can be written as:

d
—X =FX 2
o (2)

where X is a column vector, and F' is a matrix. This equation is actually quite general, since any
n-th order linear equation can be rewritten in this form, where the matrix is n X n. Given initial
conditions of the X at some time ¢y the solution to this equation is:

X(t) = B(t - to) X (to) (3)



where
O(t) = exptF

J=1

We now turn to several examples.

2.1.1 Linear Motion

We consider the coupled differential equations

d
—Xr = X
dt
d
i =0
dt

which has the simple matrix form
The general solution to this is:

where

It is straightforward to verify that

J
0 1 .
(00>—0 7> 1.

Hence the only term that appears in the exponential sum is the 7 = 1 term:

<I>(t):I+t(8 é):(é i)

It follows that:

(10)



2.1.2 Second order linear equation with constant coefficients

Consider the equation
a2 d

which is the general second order linear equation with constant coefficients. This can be re-written

al2)=(% L) (E) &

In an appendix we evaluate the exponential of an arbitrary 2 x 2 matrix. Suppose that ag > (%1)2 .
Then

as:

—Q

= exp(—%t) X {coth—l— SH;ZQt ( zb 17a )} (16)

o) = expt((ib L ) (15)

where

The general solution for x(t) is

o) = exp(~30) {Cos Ot 2(to) + Sir;zm <%x(t0) + :t(to))} (18)
sin Q1

Hi) = exp(~31) {cotha'c(to)— (bx(to)—l—%aﬁc(to)}

2.2 Response of Linear Systems to Noise

In the presence of stochastic processes the initial equation is modified. A particularly simple
modification is:

d
%X = FX 4+ G&(t) (19)
where £(1) is a vector which represents the noise source. The formal solution to this equation is
given by:
t
X(t) = B(t — o)X (fo) + / B(t — 7)GE(r)dr (20)
to

Suppose that we are interested in the system after a long time, say an infinitely long time, and
that
O(t — (—00p)) X (—00) =0 (21)
This equation will be satisfied if initially the system is at rest, or if the transfer matrix is 0 for large
time differences. In this case the system is driven entirely by the noise, and we have:

t

X() = / O(t — 7)GE(r)dr (22)

— 00



If £(¢) can be expanded in a Fourier series

then we can rewrite the expression for X (¢) as:

X)) = / O(t—1)G / expiwt &(w)dwdr
= / exp iwt { / O(t — 7)Gexpiw(T — t)ﬁ(w)dT} dw (23)
= / exp iwtP(w)GE(w)dw
where -
O(w) = /exp 1wt ®(t)dw (24)

It follows from this that the spectral density of X (¢) is:
Py (w) = |®(w)GEw)[? (25)

Of course this depends on equation (24) existing. If this is not the case, then direct means may
work.

2.3 Examples

First order system driven by noise For this system we have

z(t) = 75(7’)d7' = 7 { 7 &(w) exp iondw} dr

to to —00
00 t
= / {/ﬁ(w) expioJTdT} dw (26)
—00 to
Tl ‘
= / &(w)— (expiwt — exp iwtp) dw
w
The spectral density is then:
1
2
Pew) = [€ & 2



2.3.1 Second order system driven by white noise.

Suppose we take the second order system previously studied, and modify it so that we have:

d { x 0 1 x 0
al(2)=(% %) () (ko) &
To find the spectrum of x(t) we need:
O(w) = /exp iwt exp(—t) sir;ZQt dt (29)
0
1 1
B v—i(w+Q)y —i(w—Q) (30)
where I have substituted v = 4. Hence
Py(w) = [w)f|@w) (31)
1
= |¢w)” (32)

(72 +w? + 92)2 4202

wo = 1/Q2% — 4?2 (33)

with magnitude 1/(4Q2~?%). Expanding this term in a Taylor series about the peak we find:

The term |®(w)|? has a peak at

2 1 2 ¥ —+° 3
which implies that the half-width is

9n2
Aw: = 72
%

> V2y (35)

o=

These relations allow us to deduce the coeflicients a and b.

3 Kalman Filtering

Typically what happens is that we have some measurements (with uncertainties) of some of the
components of the X (¢;) at different times ¢;. We want to use these measurements to obtain optimal
estimates of the X ().

Suppose that we have an initial estimate X (t) with covariance Py and a measurement Z(t)

with covariance Py. The new estimate X *(t) is given by:

N 1 N
A S | 1
Xt(t) = PR (P'X +P,'2) (36)
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with covariance )
X PXI + le

The optimal estimates X+ (t) at a later time t; are easily found from above:
Xt (ty) =@ty — )X (1) (38)
and the covariance at some later time ¢ is given by
+ _ _ + T _
PLty) = @ty — )PLODT (t; — 1) (39)
These equations are essentially what are known as the “Kalman Filter” equations.

3.1 Linear Equation With Noise Input

If we are trying to estimate the X (¢), we use the same equations as before. The only equation
which is modified is the equation for the covariance, which becomes:

PLlty) = 9ty —OPLOT(t; —1) + [ @t = )GEDET (TS (1 =) (40)

If the stochastic processes are uncorrelated, then we can replace £ (T)£T<7') by a diagonal matrix.

4 Model for UT1

In the absence of external perturbations, UT1 should evolve linearly with time. Therefore, our

starting point for UT1 is:
da (UT1 (01 Ui (41)
dt\ —LOD | \ 0 0 —LOD

which has the matrix solution:

UT1(t 1 (t—to UT1 (o
( —LO<D)(t) ) = ( 0 g ) ) ( —LO<D()t0) ) (42)

This can be recast in the more familiar form:

UT1(t) = UT1(to) — (t — to)LOD(tp) (43)
LOD(t) = LOD(i) (44)
i.e., UT1 evolves linearly with time. These equations are written with —LOD because what solve
reports is % = —LOD. When we come to implementing the filter it is easier to work with
% = —LOD: we don’t have to switch the sign ofd({gl, or change the sign of various terms in

the correlation matrix.



Figure 1 is a plot of the power spectrum of UT1 derived from VLBI data. At high frequencies,
say under 30 days, the spectrum is well approximated by:

T
Day

27 2 _4 2 1 2
= | —) 107"ms*/CPD = —0.0039ms"/CPD
0% 0%

Puri(T) = ( )2104m52/CPD (45)

Based on our analysis above, this is recognized as the power spectrum you would obtain by inte-
grating white noise with spectral density of 0.0039ms?/D3. This suggests that the simple model

for UT1 be modified to:
UT1 0 1 UT1 0
(—LOD)Z(O 0)(—L0D>+(§L> (46)

where £; has a uniform spectral density of 0.0039m.s?/D3.

A closer look at Figure 1 shows that there are prominent peaks at the annual and semi-annual
frequencies. If we want to include these peaks we need to the model for LOD more complicated.
In particular, we write:

{=wr+AL+ 5L (47)

where wj, is white noise, and A; and S} are annual and semi-annual seasonal terms which have
a harmonic time dependence. We already know how to construct a model driven by noise which
has a harmonic time dependence. This was done in ***. All we need to do is pick the coefficients
based on the location of the peaks and their width.

Out total model for UT1 is then given as:

d
—X=FX 48
o +w (48)
where

UT1 01 1 0 1 0 0

—LOD 0 0 0 0 0 0 wr,

Ap 0 0 0 1 0 0 0

X=1 i, =100 —bya —aps 0 0 e (49)
ST, 0 0 0 0 0 1 0
SL 0 0 0 0 _bUS —ays Wus

5 Building a Model for Polar Motion

In the absence of noise, a simple model which describes polar motion is given by:

d [ X —QL o X
i(v )= (F %) () g

The matrix on the RHS of this can be exponentiated to give:

B(#) = exp(— o ) ( cos ot sin ot ) (51)

t— .
2@ —sinot cosot
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where o is the frequency of the chandler wobble, and @ is the quality factor. In the presence of
AAM and OAM the simple PM model is modified to:

d (X —35 1 X 5 1 :
() (F L)) (P L)) e

In analogy with the case for UT1, we also add a seasonal term to PM. It is well known that the
pole also experiences a long term drift. This suggests that we add linear terms as well. In this case
the total model for PM is given by:

PM -~ 0o v 0o 0 0 10 0
PX -0 —y o —y — 0 0 1 0
1y 0O 0 00 0 0 00 w;
Lo 0O 0 00 0 0 00 w;
X=1 F=1o o 00 o 1 o0o0l|“ o (53)
S 0 0 00 —as —a; 0 0 WA
dPM 0O 0 00 0 0 00 Wi
dPY 0O 0 00 0 0 00 Wi

5.1 Evaluation of ®(t) = exptF

We now turn to the evaluation of ®(¢). The F' matrix for both UT1 and polar motion takes the
general form:

A By By
1o ¢ 0
= 00 Oy (54)
0 0
where A, B;, C}, are sub-matrices. We want to evaluate:
S A
exptF = Z — (55)
n=0
Theorem 1
n—1 . - n—1 . )
A" Z A 1B O Z A1 By O
. =0 =0
=19 n 0 0 n>0 (56)
0 0 cy 0
0 0 0
This is true for n = 1. I now show that if it is true for n it will also be true for n + 1.
n—1 . ) n—1 . )
At A Z AV BICY + B A Z A" BoCY 4+ B1CY
=0 j=0
FF'=| crt 0 0 (57)
0 0 cptt 0
0 0 0



n n

AL N AR YT AV By (Y

J=0 J=0
={ 0 cptl 0 0 (58)
0 0 cytl 0
0 0 0

which completes the proof.

From this it follows that

exp tA GABl lofl (t) GABQCQ (t)
0 exp tC 0 0

exp th = 0 0 exptCy 0 (59)
0 0 0
where
Gapior(t) = ~ > AV (60)

n=1"'" j=0
The hard part consists of evaluating this matrix function. It may happen that this can be evaluated
by special tricks which depend on the form of the matrices which make it up. This turns out to be

the case in most of what we do. However, there are also two general ways to evaluate it, to which
we turn now.

5.2 (Gupc as an integral.

Consider the differential equation which defines exp¢F :
d
=7 €XP tF = Fexpth (61)

If we look at the off-diagonal terms we get the following equations:

d
%GABC@) = AG sBc (t) + BexptC (62)

where for simplicity I have neglected the subscripts on By and C4 which has the formal solution:

t
GA30<t0) = €tA GA30<t0) + /e(tiT)A B 677—0 dr (63)
to

Since G'apc(0) = 0, this can be simplified to yield:

t
Gape(t) = / e > B (64)
to

Note that I have used no special conditions on the matrices A, B, or C. Hence, if we can evaluate
exptA and exptC then we can evaluate Gapc(t).



5.3 Derivation of GG g~ in terms of eigenvectors of A.
Assume that the matrix A has a complete set of eigenvectors and eigenvalues:
Avg = Mg (65)

Then we can decompose each of the columns of B into these eigenvectors. Gathering all of the
eigenvectors of a common eigenvalue together, we decompose B into “eigen-matrices”.

B = > B (66)

AB, = X\iBsg

Consider a single term in the sum that defines G 4p¢:

n—1 n—1
SAIIBCT =3 "N AT BLCY (67)
7=0 a j=0

Now

n-1 o oy
S Al = AR, Y </\_>
j=0 \a

=0
C n
_ RS
= A" 1B, ( C) (68)
e
p—giL
— pla
“ N —C
From this it follows that
1
Gapc(t) = Z BGW (exp it — exp tC) (69)
a a

5.4 Calculation of Noise Covariance

We now turn to the calculation of the noise covariance. The formula for this is:

ty

Cov(ty — ;) = /@(tf — Qe (t; —7) (70)

where Q) is a diagonal matrix. If our transition matrix has the general form given above, then the
integrand can be written as:

T T T
Qo + > Gab;c,; (1)Q; GZ;BJ»CJ» Ghpo,(DQ1e"T Glip,c, (1) Q2e'
J

e“1 Q4 GZ;BICI (t) etleletclT 0 0 (71)
€2 Qy Gy (1) 0 tC2(QetCs 0
0

where (); is the diagonal part of () restricted to appropriate subspace.
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6 Evaluation of ®(¢) for UT1.

We now explicitly evaluate the transition matrix for UT1. For this case we have:
0 1
10
B = By= ( Lo )

and D and E are the seasonal matrices. We also need the following identities:
Al = 0 j>2
ABy = 0
From which it follows that:

n—1
Y AYIIBCT =BC™! n>1
=0

Therefore the off-diagonal term involving B which appears in exptF" takes the form:

Cnfl

n!

Gapc(t) = > Bt"
n=1
o0 Cn

= Y Bt"—D!
— n!

= B(exptC—-1)C!

(0 1\ _1f-a
S\ =b —a b\ b 0

Note that

hence

oy
9
—_
|
> =
TN
< |
=]
< |
—_
N——

Putting everything together we find:

et BC[}}‘ (etCUA — 1) BC[}}‘ (etCUA — 1)
(I)(t) = 0 etCua 0
0 0 elCus

where each block is a 2x2 sub-matrix, and

1 ¢
tA

in Ot ayA
etCua  — exp(—aUTAt) X {COS Qt + Slr;Z ( 2b ];CLUA )}
—OUA 9

11

(72)

(73)

(74)

(79)

(80)



6.0.1 Calculation of Noise Covariance for UT1

The general form for the noise-covariance matrix was given above. In this section we evaluate it
for UT1. For UT1 the diagonal matrices all have the same form:

Q; = diag(0, q;) (81)
hence: )
tA) (exptA),, (exptA)
exptA Q, exptAl = qy (exptA)y, 12 22 82
piAG P ¢ ( (exptA)yy (exptA)y, (exptA);2 (82)

with a similar formula for exptCpya Qua exp th 4 etc. Continuing with the diagonal terms, we
have:

2
exptA Qy exptAT = g, ( i i )

which can easily be integrated:

L
/exp tA Qy exptATdt = q, ( 3 t2 ) (83)
2
The seasonal terms are somewhat more complicated:
- (sin wt)
etc Qetc - qexp(—at) si:wt a sin wi a sin wi 2 (84)
(T) (cos wt — iT) (cos wt — iT)
which integrates to:
t sinwr\ 2 11 2 a cos 2wt — 2w sin 2wt
_ d - - —at e —at
/0 exp(—ar) < w ) T Sa?. T a (a? + 4w?) e 2w? (a? 4 4w?)

11 _, 2 _ qt @ €08 2wt — 2w sin 2wt
- _Z - 85
Saw?’  Tdap € Bw?b (85)

¢ sin wr a sin wr 1 e o
/0 exp(—ar) < " ) (cos wr — SR ydr = 1 (cos2wt — 1) — (86)
t i 1 1 2wt 4 2w sin 2wt
/0 exp(—ar)(coswr — %Smwa)QdT = oo 8w2a67“t(4w2 +a?) + kel ;U;U e
1 b a4 _aacos 2wl 4 2wsin 2wt

- - _ 87
2 2ula’ T 8w? (87)

where I have made repeated use of the identity

(4w? + a?) = 4b. (88)
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6.0.2 Evaluation of G 4pc(t)QGY 5 for UT1

The noise covariance matrix for UT1 has two terms of this form:

B (exptC —1)C71Q [B (exptC —1) C’*l}T

1 —a —1 0 0 1 —a b
-1 -1 _ L L
¢ RC _b(b 0 )(0 q)b(—l()

Note that

_110
T o2\ 0 0

Combining this with the explicit form of B above, we get:

q 1 0
Gapc()QGhpo(t) = 7 [exp tC — 1]%1 ( 0 0 )

The integral we need to evaluate is the term in square brackets:

t : 2
/ <(cos R i wT) exp(—7a/2) — 1) dr
0 2 w

which I evaluated using maple. The result, after simplification, is:

1 (4w? — 11a?)

2 (a? + 4w?)a

_I_efta_

1 (—=(4w? + a®)% + a? (cos 2wt) (—12w? + a?) + wa (sin 2wt) (8w?

~ 6a2)

8 (a? + 4w?) aw?

(2aw (sinwt) (a? — 4w?) + 8a?w? cos wt)
(a? + 4w?) aw?

1
+€7 5ta

1 (4w? — 11a?)
2 (a? + 4w?)a

6.0.3 Evaluation of GABc<t)Q€tCTfOI‘ UT1

11 ( . a? (cos 2wt) (—12uw? + a2) + wa (sin 2wt) (Sw? — 6a?)
4b

The noise covariance matrix for UT1 has two terms of this form:

B (etC . 1) C’lQetCT

Using the explicit form of the matrices, we find
tC 1 _ “497 wc
B(ee—1)c Q-1 qn([

13
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(92)

(93)

(94)

(95)
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The integral of the first term is:

. . Ll

/ <(cos wr + =28 wT) exp(—7a/2) — 1) exp(—7a/2) <smw ) dr
0 2w w

1 1

= Zmeﬂn (a <a2 - 2w2) cos 2wt — 3wa® sin 2wt + a(2w? — a2))
a? + w?) wa
1 1
+ZW (867%“ (sin wt) wa® — 2wa?® sinwt — 8 (sin wt) w3) (97)
a? + w?) wla

The second term is:

. . .
/ <(cos wr + =28 wT) exp(—7a/2) — 1) (coswt — o wT) exp(—7a/2)dr
0 2w 2w

_ le “(4w? — a® — 2wasin 2wt + a® cos 2wt) + 8¢~ T wasin wt — 4uw? (98)

8 aw?

6.1 Evaluation of ®(t) = exptF' for Polar Motion

We now turn to the evaluation of the transition matrix for polar motion. From above, this takes
the general form:

eth GAB1 C1 (t) GABQ Cs (t) GAB3C3 (t)
0 el 0 0

expth = 0 0 e 0 (99)
0 0 0 el

Evaluation of G4p,¢,(t) Since the matrix C is identically zero, it is straightforward to verify
that

. q n—1 o )
GA3101 (t) - Z ﬁ Z A" JBlC{
n=1"" j=0

o0 Anfltn
= By (100)
n!

n=1

= (exptA—1A'B

Using the explicit form of A and B given above, we find.:

1 1 -y —0C vy o (-1 0
A B_’YQ—I-O'Q v —n s - ]=l0 1 (101)

Camo (1) = (exptA —1) ( 0 ) (102)

hence

14



Evaluation of G ap,c,(t) The other off diagonal term is much more difficult to evaluate. We
use the method of decomposition in terms of eigenvalues. The matrix A has two eigenvalues:
A+ = (—v £ i0) with eigenvectors (1, +i):

Gr)b)ee(l)

We decompose the matrix By into eigen-matrices corresponding to the eigenvalues.

By = B,+B_

_o—iy [ 1 0 o+ivy {1 0
- T3 (z 0>+ 2 (—i()) (104)

From this it follows that

1
Gap,o,(t) = By (exptA} —exptCh) + B_ (exptA" —exptCh) (105)
A —C A —D
For our case we have A\_ = A\ and B_ = B*. Hence this equation can be re-written as:
1
G ABycy(t) = 2 X Re By ———— (exptA} — exp tCh) (106)
Ay — Ch

Evaluation of Gap,c,(f) Since Cj is identically zero, the same considerations as above apply,
and we have:

GA3303<75) = (eXptA—l)AilB?,

= (exptA—1)A"! (107)

where I have used the fact that Bz is zero.

6.2 Evaluation of Noise Covariance for Polar Motion

The general form of the covariance matrix was given above. The diagonal matrix ) takes the form:

Q= diag(0,0,qmmeQmQLﬂL) (108)

Since the first two elements are 0, the top corner of the noise covariance matrix is given by:

3
> Gasje; (f)QjGZ;BjCj (109)
=1
The first term in this is:
-1 0 -1 0 T
Gagio,(Q1G g, = (4 -1) ( 01 ) ( 01 ) (e —1) (110)
= (eiQW +1—2¢ 7 cos Ut) I (111)

15



This can be easily integrated to yield:

t
/ (eiQW +1—2¢ "7 cos (07')) dr (112)
0
1 —e 2ty e M~ cosot — e Mosinot —
=lt+— +2 E 2 2 E
2~ v 4o

Similarly, the last term in the top takes the form:

_ -1 T
GABSCS (t)Q3G£Bgcg = (etA - 1)A ! <AT) (etA — 1)
= (72 + 02) (eiQW +1—2¢" " cos Ut) I (113)

which is identical to the previous term apart from a trivial scale factor. The second term in the
sum, Gap,co, (t)Q2G£ By, 15 rather complicated, and I have not been able to find a closed form
for it.

Since Cy = Cy = 0 the second and fourth block diagonal terms are proportional to ¢, and qr,

respectively, and integrate to ¢q, and t¢qr,. The term el Qgetcg is identical to the “seasonal terms”
found in UTT.

We now turn to the off diagonal terms. We start with the simplest terms, which are G ap, ¢, (1)@,,€
and a similar term with subscript “3”. The explicit form of the first of these is:

. — t sinot 10
Gapio (1) =€ W( cosor Sme >+(0 _1> (114)

sin ot cosot

with the following integrals

e Nocosot + e Tysinot — o
72 + o2

t
/ e sin(or)dr = -—
0
e Mycosot —e Mosinot —

t
T dr = — 115
/0 e " cos(oT)dr o7 (115)

The contribution of this to the noise covariance can be evaluated completely.
The second term has the form:

G aBsos(t) = (exptA —1)A™! (116)

which can be simplified.

7 Appendix: Exponential of 2x2 Matrix

Consider a 2x2 real matrix A:

a b
() o

O(t) = exptA (118)

I am interested in finding
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this can be decomposed as follows:

a-+d a—d c+b c—b

A = 1 T T T: 119
5 + 51 + 512 + 5 13 (119)
= Aol + AT (120)

where

o A R R S (T B

are the Pauli spin matrices, apart from labeling and factors of 7. Note that:
T2=T2=1=-T% (122)

and that

For any two matrices A and B that commute we have exp(A+ B) = exp Aexp B. Since I commutes
with everything, it follows that:

exptA = expt(AOI—I—K?) (124)
= exptAoexptK? (125)

Hence we are left with evaluating:

(T
exptAeT = ZT (126)
=0
Note that by equation (122) we have the following simple identity:
(AeT)? = A} + A2 — A2 (127)

There are two possibilities, depending on whether the term on the right hand side (RHS) of
this equation is positive or negative. Suppose it is negative, so that we can write

W= A2~ A7 A2 (128)
then
((AeT)” = (~1y (). (129)

Using this, it is straightforward to evaluate the exponential. The sum naturally splits into a sum
over the even and odd terms. For the even terms:

——\ 27 .
tAeT (1 ()2
( - ') = Z (w:ﬁ) = coswt (130)
= (%) = ()

17



While for the odd sum we have:

il ) Y

(tﬂ?) 7+ (—1)? (wt)QJ (tAo?) sin wt ——

5 a1 ) - et
CTESTII S o7y ?

j—0 =0

Hence, combining our results, we have:

AeT

inwt
exptA =exptAog X <cos wt + N Ae T )

which, in terms of the original elements of the matrix A is:

o, O

d inwt [ 44
exptA:expt(a; ) X (coswt—l—SH;w (62

w|\
]
N—
N—

If, on the other hand, we assume that

A2 4 A2 A2 >0

w:\/A%—I—A%—Ag

then we can define:

and

AeT

inh wt
exptA = exptAp X <coshwt + e _>_>> .

w
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